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The stopping site of the muon in a muon-spin relaxation experiment (µ+SR) is in general unknown.

There are some techniques that can be used to guess the muon stopping site, but they often rely

on approximations and are not generally applicable to all cases. In this work, we propose a purely

theoretical method to predict muon stopping sites in crystalline materials from first principles. The

method is based on a combination of ab initio calculations, random structure searching and machine

learning, and it has successfully predicted the MuT and MuBC stopping sites of muonium in Si,

Diamond and Ge, as well as the muonium stopping site in LiF, without any recourse to experimental

results. The method makes use of Soprano, a Python library developed to aid ab-initio computational

crystallography, that was publicly released and contains all the software tools necessary to reproduce

our analysis.
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I. INTRODUCTION

In a muon-spin relaxation experiment (µ+SR) spin-polarized positive muons are implanted in a sample

to probe its local static and dynamic magnetic properties. µ+SR is a sensitive probe of magnetism, but one

of its limitations is not knowing the site of implantation of the muon, which limits its use for measuring

magnetic moments or for comparing different magnetic structures.

There are some techniques that can determine the muon stopping sites, but these techniques are limited

to certain specific cases. For instance, in some materials, the determination of the muon stopping site

was possible by using accurate experimental studies of the muon frequency shift in an applied magnetic

field1. In particular, the so-called channelling and blocking techniques have produced some experimental

information on the location of the muon site in semiconductor materials2.

Nonetheless, the number of examples where the muon site can be determined by experimental means

alone is limited, and in materials such as Fe3O4a combination of experiments and calculations has been

used to determine the muon stopping sites3. In these examples, theoretical calculations are a cheap way

of testing potential muon stopping sites. For instance, the muon is placed in a particular site and one of

the hyperfine coupling constants (HFCC) of muonium in that site is calculated and compared with the

experimental results to check the validity of the muon stopping site. However, in most of these examples

there are a few starting guess sites for the muon, which limits the number of test calculations. This limiting

of the potential stopping sites is not possible in most systems and, therefore, it is not always possible to

determine the muon stopping site using these combined techniques.

Whenever the candidate muon sites cannot be assigned by an educated guess that uses experimental

data, we need to explore all the possible interstitial sites using a theoretical method. This can be a radically

different process depending on whether the muon remains in its charged state (µ+) or captures an electron

forming the pseudo atom muonium (Mu). One of the currently most popular methods for predicting the

stopping site is called the Unperturbed Electrostatic Potential (UEP) method. This method relies on the

analysis of the electrostatic potential of the host material, which is obtained from DFT simulations. The

UEP method is not fully reliable. For instance, it has predicted the stopping sites of charged muons in

materials such as RFeAsO (R=La, Ce, Pr, and Sm)4 and LaCoPO5, but could not predict the stopping sites

of neither µ+ nor Mu in fluorides6,7. In the case of muonium, it has been suggested that the screening

provided by the electron makes the muon less sensitive to the electrostatic potential of the host6,8,9 . With

regards to charged muons, it has been proposed that the inability to account for the muon-host interactions

is what decreases the efficiency of the UEP method in predicting the muon stopping sites6,7. Hence, we

believe that an alternative method is needed, and we propose one that combines machine learning methods

with a computational technique known as Ab Initio Random Structure Searching (AIRSS)10,11.
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The AIRSS approach makes use of random structure generation to perform an unbiased search of stable

crystal structures for a given stoichiometry12. Constraints encoding whatever knowledge we have on the

system, like symmetries, can be included. Our aim is to automate as much as possible the process of ex-

tracting information about not only the absolute minimum of the system, but also the relative ones. In this

work, we focus on the paramagnetic states formed by muons in semiconductors. In particular, we revisit

the case of muons in pure Si, Ge, Diamond and LiF6, and use a combination of computational methods to

retrieve the known muon stopping sites for these systems. We first follow the established AIRSS methodol-

ogy by generating a number of muoniated random structures and running ab-initio geometry optimization

calculations on them. Then we apply our new machine learning methods to analyse the resulting structures

and use them to predict the muon stopping sites.

II. METHODOLOGY

A. Structure Generation

Ab-Initio Random Structure Search, or AIRSS13, has been demonstrated as a successful approach to

many complex problems in crystalline structure detection; by comparison with most of them, the problem

of finding the optimal stopping site of muonium in a crystal is much simpler, since it only involves a con-

figuration space defined by three degrees of freedom, rather than dozens or hundreds. For this reason we

decided to apply this method as a starting point for our calculations.

The AIRSS approach consists of generating random initial configurations and then using CASTEP (or

another equivalent DFT code) to perform a geometry relaxation on each of them. The rationale for this ap-

proach is that studies of potential energy surfaces for crystals shows that the attraction basins of the various

local minima tend to have a greater hypervolume the lower the minimum’s energy is14–16. In other words,

by sampling in a uniform random way the entire configuration space, it is statistically more likely that the

great majority of starting configurations will relax to a relatively stable energy minimum. However, given

the expense of performing these calculations, it is sensible to trim down some of the most unreasonable

starting configurations to avoid wasting time. This was done in two steps:

• First, all configurations in which the muonium collided with an existing atom were eliminated. This

is part of the standard AIRSS methodology;

• Second, all configurations were examined, and when a pair was found with starting positions closer

than a given limit, one of the two was eliminated. This was done to avoid running redundant calcula-

tions on configurations that would likely slide into the same local minimum, by approximating what
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Atom rmin
A−Mu (Å) rmin

Mu−Mu (Å)

C 0.7 0.7

Si 1.1 0.7

Ge 1.0 0.7

Li 1.8 0.8

F 0.7 0.8

TABLE I: Distances (in Angstroms) used to discard AIRSS generated starting configurations for diamond,

silicon, germanium and lithium fluoride. rmin
A−Mu refers to the minimum distance between a muonium and

an atom of the host crystal, while rmin
Mu−Mu refers to the minimum distance between two muonium starting

positions.

in computer graphics is known as a ”Poisson sphere” distribution17. This was done with a in house

Python script.

The radii used to apply both these filtering processes can be found in table I. Particular care was taken

to take into account the effects of periodicity, so that every time a distance between a pair of atoms was

calculated, this was reduced to the distance between the two closest periodic copies of those atoms, avoiding

artefacts due to the particular choice of unit cell representation.

B. Ab Initio Computational Details

We performed Density functional theory (DFT) calculations with the CASTEP18 code within the gen-

eralized gradient approximation (GGA)19 and using ultrasoft pseudopotentials20. These calculations were

performed in Si, Ge, Diamond and LiF 2×2×2 supercells based on the materials’ conventional cubic unit

cells and which contained one muonium each that had been placed in a random position. These supercells

were big enough to prevent interactions between the muons placed in the periodic images of the super-

cell created by the DFT calculations. All calculations were spin polarised, with the initial spin placed on

the muonium atom, and all were performed with a wavefunction cutoff of 450 eV for Si, 550 eV for Ge,

600 eV for Diamond and 700 eV for LiF. We used Monkhorst-Pack grids21 of 2x2x2, for sampling the

reciprocal space of Si, Ge and Diamond, and of 3x3x3 for sampling the reciprocal space of LiF. All the

ions were allowed to relax until the total energy change and forces in all ions had fallen below convergence

thresholds of 1×10−8 eV and 1×10−4 eV

Å
respectively. The relaxations were performed constraining the

lattice parameters of the cells to their experimental values of Si=5.430Å, Ge=5.652Å, Diamond=3.567Å

and LiF=4.02Å.
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C. Cluster Analysis

A common way of analysing AIRSS results is to simply classify them based on their energy. However,

in this work we pioneer a more advanced method based on machine learning techniques, by which we try to

classify the output structures combining energy and geometric parameters, with the aim of extracting more

information that otherwise might go unnoticed. This is motivated by our interest in all potential stopping

sites, not just the lowest energy one, which requires us to be able to recognise different configurations in

the higher energy range. Intuitively, we expect that if suitable parameters are chosen to describe their key

properties, all final configurations that represent random fluctuations around a specific stopping site will

look far more similar to each other than to those around a different site. This intuition, that would make it

easy for a human eye to recognize the sites by looking at a 3D representation of the various structures, is

what we try to automate in a way that might allow us to sift through dozens or hundreds of candidates far

more efficiently and quickly than any human would.

The technique used here is implemented in the Python library Soprano. Soprano has been developed with

funding from the CCP for NMR Crystallography, is licensed under the GNU LGPL and can be downloaded

for free22. The main purpose of Soprano is to provide the users with a set of tools to create, manipulate

and analyse large amounts of chemical structures, building upon the well known Atomic Simulation Envi-

ronment (ASE)23 library. In this specific case we make use of the ‘phylogenetic’ analysis tool, which char-

acterises each structure with an array of user-defined properties and then clusters them by similarity, using

the algorithms implemented in the cluster package of the Scipy library24. These algorithms constitute

the simplest type of unsupervised learning for pattern classification. Their purpose is to split an ensemble

of points in an N-dimensional space (here the dimensionality is controlled by the number of parameters we

choose to use for classification) based on their distance; different metrics can be used sometimes, but in this

work we stick to the traditional Euclidean one, r2 =
∑

i x
2
i . There are two principal clustering algorithms

implemented in Scipy:

• the hierarchical clustering method forms clusters by iteratively clumping together points. It will look

for the closest point-point, cluster-cluster, or cluster-point pair, join them together, then repeat the

procedure until the shortest distance exceeds a user-defined ’tolerance’ parameter. This tolerance is

usually referred to as t and is normalised to the maximum distance in the system, so that for t = 1

only one cluster will exist, and for t = 0 all points will constitute their own clusters. For point-cluster

distances, the cluster is represented by its closest point to the other point (in the case of two clusters,

all possible combinations are considered and the shortest one is picked). When using this method it

is possible to build a dendrogram showing how the various points join up in clusters as t increases;

the lowest the value of t at which a cluster is formed, the more similar its member elements will be;

• the k-means clustering method instead takes as an initial parameter a guess for the expected number

of clusters k. It then proceeds to create k centres for the clusters, and to attribute the points each
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to a cluster based on which centre is the closest. After that, the centres are moved to minimise

the overall root sum square of distances, and the assignment is repeated. The procedure continues

self-consistently until the clusters’ composition stops changing and the RSS is minimised.

Our method has been to use both these algorithms in sequence. First, the hierarchical method is em-

ployed, and a dendrogram is plotted to have a bird’s eye view of the structure of the set. If strongly distinct

clusters are present, as it should be the case if the AIRSS run did indeed produce examples of multiple

stopping sites, then this should be easily visible. We can then use the dendrogram to estimate how many

clusters we could expect, and input that parameter in the k-means algorithm. If the classification is mean-

ingful, there should be reasonable agreement between the size and composition of the clusters found with

either method.

Information on how the arrays identifying each system are built in Soprano is provided in Appendix A.

Here we focus instead on the parameters chosen as physically significant for this specific case study. Our

choice fell on two of the ‘genes’ implemented by default in Soprano. The first was simply the energy. The

second was a collection of Steinhardt bond order parameters,25. These are known rotationally invariant

functions which describe the local environment of a given atom with the use of spherical harmonics; they

can be considered a sort of power spectrum for angular frequencies instead of spatial ones. Traditionally,

these are used for probing local order in disordered systems such as liquids or glasses, and that makes them

especially sensitive to the shape of the site in which a muon sits, even accounting for the small possible

disorder due to the randomised starting conditions. Specifically, the parameters of interest to us are the ones

defined in equation (1.3) of the cited paper, namely:

Ql =

(
4π

2l + 1

l∑
m=−l

|Qlm|2
)1/2

(1)

for any integer angular momentum channel l. However, at a difference with the original definition, here

we slightly alter the way Qlm is defined in order to include a smooth cutoff that only evaluates the local

environment:

Qlm = 〈Qlm(~r)〉 =
〈S(~r)Ylm(θ(~r), φ(~r))〉

〈S(~r)〉
(2)

with a sigmoid weighing function

S(~r) =
1

2

r0 − |~r|
δ

[(
r0 − |~r|

δ

)2

+ 1

]−1/2

+ 1

 (3)

where we adopted r0 = 2Å and δ = 0.05Å. In this case, equation 1 was computed averaging over all

bonds between the muon and the rest of the atoms in the unit cell (reduced to their closest periodic copy)
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for angular momentum channels ranging from l = 1 to l = 6, included. Therefore, the resulting gene

had a length of six, which gave us a 7-dimensional array overall for each structure once the energy was

included: [Q1, ..., Q6, E]. Higher values of l would increase sensitivity to small changes in the shape of the

surrounding environment at the expense of a higher computational cost, which was deemed not necessary

in this case. Therefore, this choice of genes is meant to highlight which output structures are similar to each

other in both energy and local environment experienced by the muon.

III. RESULTS

A. Hierarchical Clustering

Silicon, Diamond and Germanium

Figure (1) shows the dendrogram results of hierarchical clustering for the silicon, diamond and germa-

nium supercells. The labels on the x axis correspond to all the structures that resulted from the filtering

process, which have been sorted in accordance with their relative energies. On the y axis, it can be seen

that the clustering starts at very small values of t and, at t ≥ 0.1, the systems can be clearly divided into 3

clusters for silicon and 2 clusters for diamond and germanium. To analize the clustering behaviour at values

of t ≤ 0.1, we have zoomed in the regions in the x axis highlighted in grey, red and green rectangles: the

branches of the dendrogram included in these rectangles are shown as insets in Figures (1a), (1b) and (1c).

The low threshold for t for cluster definition indicates that each of the clusters is composed of structures

that look similar to each other in parameter space. The fact that the optimizations have converged, from

wildly different initial structures, to large sets with very small internal variability suggests that these likely

correspond to muon stopping sites. We will revisit this in the results of k-means clustering.

In the insets of figure (1a) show the detailed structures of the clusters in silicon. In the grey rectangle

on the left hand side we can see a very well-defined cluster formed by three structures that is defined to a

level of tolerance of t ≈ 0.002. This cluster consists of the structures with indices 0, 1 and 2, which are

also the three most stable structures and thus are likely to be defining a candidate stopping site. The next

set of 27 structures highlighted in the red rectangle have higher energies. However, their distribution in the

parameter space is such that they are also defining a cluster to a level of tolerance of t ≈ 0.002. Finally,

the 50 structures highlighted in green define a cluster to a level of tolerance of t ≈ 0.02, but most of the

structures in this cluster are already clustered at t ≈ 0.003. This distribution of structures indicates that

some of the structures in the green cluster -the ones near the sides of the green rectangle- are slightly more

’dispersed’ in the parameter space than the structures that compose the other two clusters.
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Figures (1b) and (1c) show the dendrogram for the diamond and germanium supercells. It shows 71

and 83 structures that at t ≥ 0.1, can be clearly divided into 2 clusters, whose detailed branch structure

for values of t ≤ 0.1, are also shown in the insets of these figures. The clusters highlighted in green are

defined for t ≈ 0.01 and are composed of 59 structures in diamond and 20 structures in germanium, while

the clusters highlighted in red are defined for t ≈ 0.1 and are composed of 12 structures for diamond and

63 structures for germanium. Here the threshold values of t for clustering differ in an order of magnitude,

indicating a clear distinction between the structures of these clusters in the parameter space. This distinction

is clearly indicated in the results of k-means clustering.

Lithium Fluoride

Figure (2) shows the dendrogram for the lithium fluoride supercell. It shows 61 structures that at t ≥ 0.2

can be separated into 2 clusters. The insets in the figure show the detailed branch structure of these clusters.

The cluster highlighted in green is defined for t ≈ 0.1 and is composed of 19 structures, while the cluster

highlighted in red is defined for t ≈ 0.2 and is composed of 42 structures.

B. K-means Clustering

Silicon, Diamond and Germanium

Figure (3a) shows the k-means clustering in Si with a guess of n = 3. The three clusters are represented

by circles whose diameter is proportional to the number of structures contained in each cluster. On the x

axis we indicate the average total energy of the structures belonging to each cluster relative to the lowest

energy found in the system. On the y axis we indicate the standard deviation of the energy in each of the

clusters. Relatively small values for the standard deviations indicate consistent clusters, which are more

likely to represent physical local energy minima.

Clusters Si 2 and Si 3 in figure (3a) contain structures where the muonium is within the tetrahe-

dral/isotropic site (MuT ) of the cubic cell structure type of Si, but with an important distinction. On one

hand, cluster Si 2 is composed by the 27 structures showed in the red rectangle in figure (1a). In these

structures, the muon is bonded to one of the four Si atoms that define the tetrahedral site and is, therefore,

away from the centre of the tetrahedron. On the other hand, cluster Si 3, composed of the 50 structures

highlighted in green in figure (1a), has its structures slightly displaced from the centre of the tetrahedron,

but not bonded to any of the Si at the edges of the tetrahedral site. According to these results, the absolute

minimum for the muon stopping site in the tetragonal site of Si is not in the tetrahedral centre, but in a
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spherical shell surrounding a very low potential hill that is located at the tetrahedron centre. This hill is low

enough that the quantum effects associated with the muon would likely lead to a delocalisation of the muon

that would stabilise the site and avoid symmetry breaking. In Appendix B there is a more detailed discus-

sion of these two alternative tetragonal sites for the muonium in Si. Regarding cluster Si 1 in figure (3a), it

contains the 3 structures highlighted in grey in figure (1a). These structures are clustered around the axially

symmetric bond-centred site (MuBC). The regions of a generic cubic cell structure corresponding to these

muonium stopping sites, MuT and MuBC , for isotropic and axially symmetric paramagnetic muoniums in

Si, Diamond and Ge, are schematically shown in Figure (4).

Figures (3b) and (3c) show the k-means clusters obtained for diamond and germanium with a guess of n

= 2. Clusters Diam 1 and Ge 2 contain 12 and 63 structures clustered around the axially symmetric bond-

centred site (MuBC), and clusters Diam 2 and Ge 1 contain 59 and 20 structures which have the muonium

located near the centre of the tetrahedron and not bonded to any of the carbon or germanium atoms forming

the tetrahedral site. For diamond there is a difference of ≈1.4 eV between the relative average energies of

the two clusters and of ≈0.05 eV between their corresponding standard deviations, with cluster Diam 1

being the most disperse cluster in the parameter space. Regarding germanium, cluster Ge 2 has an average

energy ≈0.41 eV larger than that of Ge 1 cluster. The standard deviation of both Ge 1 and Ge 2 is below

0.02 eV, indicating a low dispersion for both clusters in the parameter space.

Lithium Fluoride

Figure (5) show the k-means clusters obtained for lithium fluoride with a guess of n = 2. Clusters LiF 1

and LiF 2 contain 42 and 19 structures respectively. Cluster LiF 1 has an average energy of ≈ 0.38 eV

and a standard deviation of ≈0.23 eV, and its structures are clustered around the octahedral site. On the

other hand, cluster LiF 2 has an average energy of ≈8.0 eV and an standard deviation of ≈0.43 eV: all

the structures in this cluster are much more dispersed in the space and have a much larger energy. The

image shown in figure (5) indicates the structure with the minimum energy in the cluster, which has lower

symmetry than the other. In general, due to the high energies involved, it seems reasonable to consider this

cluster as non physical, or at least not experimentally relevant.

IV. ANALYSIS

Using only ab initio simulations and data analysis techniques we were able to identify a small number

of candidate stopping sites for muonium in crystalline silicon, germanium, diamond and lithium fluoride.

Each site is represented by a cluster of size ranging from 3 to 60 optimised structures, identified by en-
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Cluster Rel. Aver. Energy (eV) Structures in Cluster Standard Dev. (eV)

Si 1 0 3 0.0002

Si 2 0.23 27 0.0012

Si 3 0.26 50 0.0015

Diam 1 0.02 12 0.051

Diam 2 1.4 59 0.01

Ge 1 0.42 20 0.005

Ge 2 0.01 60 0.015

LiF 1 0.38 42 0.23

LiF 2 0.79 19 0.43

TABLE II: Main properties of all of the identified clusters in Si, Diamond, Ge and LiF.

ergetic and geometric similarities. The full list of their properties is listed in Table II. The low values of

the standard deviation of energy among these clusters reinforce the case that they represent indeed small

fluctuations around a single energy minimum, and are not just flukes. If, for example, two non-equivalent

minima were grouped under the same cluster due to accidental geometric similarities, we would expect a

much higher dispersion of the energy values.

The predicted sites, that can be seen in figures (3a), (3b), (3c) and (5), closely match what is known

from the literature about muonium defects in diamond, silicon, germanium and lithium fluoride crystals

from both experiments and theoretical calculations2,6,26, which have identifyed a bond-centred (MuBC) and

a tetragonal(MuT ) stopping site diamond, silicon and germanium, and an octahedral site in lithium fluoride.

Regarding the sites in silicon, diamond and germanium, we know from the literature2,27 that both the

(MuBC) and (MuT ) sites were experimentally observed. The data from TableII however suggests that the

tetrahedral sites (represented by clusters Si 2 and Si 3, Diam 2, and Ge 2) all have higher formation

energies than the bond centred ones. The lowest energy difference between tetrahedral and bond centred

sites, ∆E, is 0.23 eV. If we assume that the system is in thermal equilibrium, this value of ∆E implies

that a temperature of more than 2000 K is needed to transition from one stopping site to the other. Hence,

the order of magnitude alone seems to completely refute the possibility that the tetrahedral site could be

observed in thermal equilibrium at low temperatures. The prediction that the MuBC site is lower in energy

than the MuT one is also in qualitative agreement with previous theoretical results26. This reinforces the

commonly held view that during an experiment muons do not have the time to effectively relax to their

equilibrium state and can therefore occupy metastable sites27.
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Furthermore, our calculations support the prediction of delocalisation of the muon in the MuT site of Si

that was advanced in previous studies8,28. In order to clarify this point, we carried out further calculations

on many configurations surrounding the site to plot the local energy landscape, reported in Appendix B.

We observed for the MuT site in Si a flat potential with a slight maximum in the centre and a minimum

approximately distributed in a radial shell surrounding it; this is the most likely reason for the observation

of two clusters corresponding to that site, Si 2 and Si 3, with different positions for the muonium itself

with respect to the centre of the tetrahedra. Experimentally, the delocalisation of the muon in the tetragonal

site was first proposed by Holzschuh et. al.29. In this model, the muon hops between different sites in the

tetragonal region, which helped to explain the anomalous temperature dependence of the isotropic compo-

nent of the hyperfine coupling constant in Si.

Regarding the stopping sites in lithium fluoride, our methodology predicted the octahedral stopping site

for muonium, which is the site that has been both experimentally and theoretically predicted6,30. The other

local minimum we found has an average energy too large to be a physically meaningful muonium stopping

site.

V. CONCLUSIONS

We have proposed a purely theoretical method to predict muon stopping sites in crystalline materials.

The method is based on a combination of ab initio random structure searching and machine learning, and it

has successfully predicted the MuT and MuBC stopping sites of muonium in Si, Diamond and Ge, and the

octahedral stopping site in lithium fluoride, purely from first principles. The process is easily reproducible

and requires little human input to analyse dozens or even hundreds of structures. Soprano, a Python library

containing the tools used for this analysis as well as many others designed for different systems, has been

released publicly22 and will be fully documented in a future work.
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Appendix A: The phylogen module in Soprano

Soprano’s phylogen module contains classes and functions for clustering similarity analysis of large

populations of structures. It owes its name to the analogy between this approach and the construction of

phylogenetic maps or trees connecting living species based to the similarity of their DNA. Similarly, in this

module, the user can pick a number of ‘genes’ by which the structures should be characterised, and these

genes will be chained together into a single array that uniquely defines each structure. These arrays will

then constitute the points whose similarity relationships are evaluated through clustering.

In Soprano, a gene can be any scalar or vectorial property of a structure. For example, the energy of

a structure can be a gene of only one element; its lattice parameters a, b, c a gene of three; and so on.

When performing a clustering operation the user can also pick a weight for each gene, thus determining the

relative importance between them, and a normalising interval. By default, all genes are weighted equally,

and they’re normalised to [0, 1] over the entire collection being analysed. So, for example, if we indicate

the raw value for element j of gene i as xji in an analysis using g genes each with ni elements we’ll have

that the ‘DNA’ array for a given structure is defined as:

[X1
1 , X

2
1 , ..., X

n1
1 , X1

2 , ..., X
n2
2 , ..., Xng

g ] (A1)

The normalised and weighted values Xj
i are defined as:

Xj
i =

wi√
ni

[xji −min(xji )]

[max(xji )−min(xji )]
(A2)

where wi is the user-defined weight, minima and maxima refer to the whole collection, and the square

root term has the purpose of normalising for size, to prevent longer genes from dominating the classification.

Appendix B: Tetragonal/isotropic MuT site in Si

We investigated the nature of the tetrahedral site MuT by performing CASTEP phonon calculations at

the Γ point on a Si supercell with the muon perfectly located in the tetragonal site. This muonated Si

supercell has 195 vibrational modes, and we assumed that the modes ωi associated with the muon are

mutually perpendicular and are decoupled from all the other modes as a consequence of its much smaller

mass. However, we found that all three the main vibrational frequencies for MuT are negative, which

indicates that the associated mode is imaginary, i.e.: the muon in the tetragonal position is in a maximum

of its corresponding Born-Oppenheimer (BO) potential. To estimate the size of this maximum, we took the

calculated eigenvectors corresponding to those negative frequencies and displaced the muon along them, in

positive and negative directions, and then calculated at equally spaced points the total DFT energy. Figure

(6) shows the results of these calculations. The shape depends only minimally from the specific eigenvector
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chosen, which suggests that the potential is close to a radially symmetric quartic with a minimum shell

around r = 1 Å.

This maximum for the BO potential in the Tetragonal site of muonium has been observed previously

using DFT calculations26,28, and there is experimental and theoretical evidence that the muon in the T site

of Silicon is delocalised28,29. To the best of the author’s knowledge, there is only one theoretical paper that

reports a minimum of the BO potential in the tetragonal site31, but this result could not be confirmed by

other DFT calculations. Furthermore, we conducted computational tests to rule out that the maximum in the

BO potential is an artificial result arising from our calculations. We performed full geometrical relaxations

and phonon calculations at the Γ point, for Si with Mu in the tetragonal site using the LDA and GGA

functionals, and obtained the results indicated in Table III.

Si Exp. DFT-LDA DFT-GGA DFT-GGA (a from LDA)

a (Å) 5.43 5.40 5.47 5.40

f1 (cm−1) N/A -182.13 -410.0 -409.9

f2 (cm−1) N/A -182.1 -409.9 -409.9

f3 (cm−1) N/A -182.1 -409.9 -409.8

TABLE III: Lattice parameters and negative (imaginary) phonon frequencies for muonium in the

tetragonal site of Si.
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of rare earth and iron magnetism in rFeAsO (r = La, ce, pr, and sm): Muon-spin relaxation study and

symmetry analysis. Phys. Rev. B, 80:094524, Sep 2009.
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(a) Silicon

(b) Diamond

(c) Germanium

FIG. 1: (1) shows the hierarchical clustering trees for silicon, diamond and germanium, with colours

applied for truncation at t = 0.2 in the y axis. The blue lines above t = 0.2 indicates the clusters into

which the structures can be classified. The structures that resulted from the filtering process are labeled

and placed along the x axis in accordance with their relative energies. The indexing starts with 0 for the

lowest energy structure, but the values of these indexes are not correlated with their positions in the x axis:

the structures with the lowest energies are closer to x=0.
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FIG. 2: (2) shows the hierarchical clustering tree for lithium fluoride, with colours applied for truncation at

t = 0.2 in the y axis. The blue lines above t = 0.2 indicates the clusters into which the structures can be

classified. The structures that resulted from the filtering process are labeled and placed along the x axis in

accordance with their relative energies. The indexing starts with 0 for the lowest energy structure.
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(a) Silicon
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Ge_1Ge_2

(c) Germanium

FIG. 3: Figure (3) shows circles representing the clusters obtained via the k-means clustering method. The

crystalline structures correspond to the most stable structure in each of the clusters. The diameter of each

circle represents the number of structures contained in each cluster. The x coordinate of the centre of each

one of the circles indicates the average energy of the corresponding cluster -relative to the lowest energy

structure in the cluster-, while the y coordinate of the centre indicates the standard deviation of the average

energy of that cluster.
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FIG. 4: Tetragonal MuT and bond-centred MuBC sites in a generic conventional unit cell of a material with

a cubic structure like Si, Diamond or Ge. The space group is Fd3m and the only difference between these

structures is that they have different lattice parameters.

LiF_1

LiF_2

FIG. 5: Figure (5) show the two clusters obtained via the k-means clustering method in LiF. The x

coordinate of the centre of each one of the circles indicates the average energy of the corresponding

cluster, while the y coordinate indicates the standard deviation of the average energy of that cluster.

Clearly, cluster LiF 2 is too high in energy to be representing a physically meaningful stopping site.
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FIG. 6: DFT total energies calculated at equally spaced points along the three eigenvectors corresponding

to the calculated negative frequency for MuT
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