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Abstract. The methodology for the calculation of charged defects using the CRYSTAL
program is discussed. Two example calculations are used to illustrate the methodology: He™
ions in a vacuum and two intrinsic charged defects, Cu vacancies and Ga substitution for Cu,
in the chalcopyrite CuGaSs.

1. Introduction
In recent years it has become possible to accurately calculate defect formation energies in
crystalline solids using ab initio methodologies. While the calculation of uncharged defects
is relatively straight-forward, the calculation of charged defects is more complicated [1]. In this
paper we outline a methodology for the calculation of charged defect formation energies using
the CRYSTAL program. The techniques used are transferable to other ab initio programs.
The first example is a very simple system, consisting of a periodic array of He™ ions in a
vacuum. The second example involves charged defects in the chalcopyrite CuGaSs. The defects
considered are the vacancy formed by the removal of a Cu™ ion (V,) and the substitution of
a Cut ion for a Ga3t ion (Gazct). This example has been chosen as it is of current scientific
interest, as CuGaSy could potentially be used as an absorber layer in highly efficient solar cells.

2. Calculational Scheme

All calculations are performed using the CRYSTAL program. This program computes the
electronic structure of systems within Hartree-Fock, density functional (DFT) and various hybrid
approximations using local Gaussian basis sets for systems periodic in three, two, one and no
dimensions.

Our first example, a periodic array of He™ ions in a vacuum, is calculated using Hartree-
Fock theory and a standard Pople 3-21G basis set. The second example, V, and Ga%t
defects in CuGaSa, is of current scientific interest, consequently, care has been taken to perform
calculations that will lead to accurate defect formation energies. A full account of this work can
be found elsewhere [2]. The B3LYP hybrid exchange functional [3] is used. This functional has
been shown to provide a reliable description of geometric and electronic structure and energetics
in a wide range of materials [4, 5]. In particular, hybrid functionals, such as B3LYP, provide
a much better prediction of the band gap of semiconductors than local density approximation
or generalised gradient approximation DFT functionals. Polarised triple valence Gaussian basis
sets were used.
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Figure 1. The change in the
‘ ‘ ‘ ‘ ‘ energy of the uncharged CuGaSs
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3. Defect Formation Energies
The formation energy of a defect, D, of net charge ¢, in system X is defined as

AH (D) = Ext(D) — Eyot(X) + Znu + q(Er — Ey) (1)

where Fiot(D) and FEiot(X) are the total energies of the system with and without the defect,
D. n; represents the number of atoms of element ¢ that are removed from the system when the
defect is formed (a negative value for n; denotes addition of atoms). p; is the chemical potential
of element i, it represents the energy of the atoms that are removed (or added) to the system
when the defect is formed. The fourth term, q(Er — Ey ), represents the energy change due to
the exchange of electrons and holes with the carrier reservoirs. (Ep — Ey) is the Fermi energy
relative to the valence band maximum (VBM) of the defect free system.

4. Energy Offset Correction

A consequence of using periodic boundary conditions within electronic structure calculations
is that the boundary conditions lead to the conditional convergence of the Coulomb potential.
In the case of uncharged systems the potential and total energy converge to well defined values
under the conditions described first by Ewald [6]. The total energy of a charged system, however,
can only be calculated to within a constant offset [1]. The value of this constant offset depends
on the average crystal potential. It can be obtained by calculating the change in the energy of
an uncharged system when an electron is removed from it; as the system size is increased the
change in energy converges to the value of the offset.

In our first example, He™ in a vacuum, the energy offset is equal to zero as the defect free
system is simply a vacuum and the total energy of a uniform background charge in the limit
of the charge tending to zero (equivalent to the system size tending to infinity) is zero. The
change in energy of the CuGaSs system before and after the removal of an electron is displayed
in figure 1 for increasing supercell size. As the system size tends towards infinity the difference
in energy converges to approximately 7.15 eV. The value of Ei (D) in equation 1 must be
corrected by this constant offset multiplied by the net charge of the system.

5. Coulomb Interactions between Defects

The total energy of a periodic system that contains a localised charged defect treated within
a finite supercell includes a term due to defect-defect, defect-background and background-
background Coulomb interactions. To calculate the energy of an isolated defect this term must
be subtracted from Fio (D). It can be approximated by the multi-pole correction [7]:
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where a; is the lattice dependant Madelung constant, €, is the relative dielectric constant, V'
is the volume of the cell and @ is the quadrupole moment of the defect.
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The first term in equation 2 represents the defect-defect Coulomb interaction. It can trivially
be calculated using CRYSTAL as it is equivalent to the nuclear-nuclear interaction of a periodic
system consisting of hydrogen atoms at the positions of the defects multiplied by ¢?/e,. This
nuclear-nuclear interaction energy is reported in the standard output of a CRYSTAL calculation.
The value of €, in equation 2 can either be obtained from experimental results or calculated
directly using CRYSTAL [8, 9]. The second term in equation 2 is due to the interaction
between the defects and the background charge. The analytical calculation of the second term
in equation 2 is not straight forward, hence it is often easier to obtain it numerically. In many
cases, however, this term will be small enough to be neglected. The third term scales as 1/ Vo/3
and can almost always be neglected. In sections 5.1 and 5.2 the effect of including the first and
second order terms in the calculation of defect energies are investigated.

5.1. Example 1: He' in a vacuum

The energy of an He™ ion in a periodic cubic array was calculated for increasing cell size. After
accounting for the electrostatic interactions described by equation 2, the energy of the periodic
system should equal the energy of the isolated ion. For comparison, the energy of an isolated
He™ was calculated using CRYSTAL with no periodic boundary conditions. The difference in
energy between the isolated Het ion and the periodic system, before and after accounting for
the first order electrostatic interactions, is plotted in figure 2a, second order corrections are also
included in figure 2b. A cubic cell of length 2A leads to a total energy per Het ion that is more
than 10 eV smaller than the energy of an isolated He™ ion if the electrostatic corrections are
not taken into account. After subtracting the energy given by the first term in equation 2 the
difference in energy between the two systems is reduced to around 1 eV, applying second order
corrections reduces the difference in energy to 0.02 eV.
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Figure 2. The difference
j i in the calculated energy
of an isolated He™ ion
and a periodic system
consisting of an He™t ion
in each cell.
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5.2. Example 2: Vi, and Gaét defects in CuGaSy

The formation energy of Vo, and Ga%f1 defects as a function of increasing supercell sizes has
been calculated. To isolate the purely electrostatic effects these calculations were performed
without geometry optimisation. The resultant energies before and after applying first order
corrections (the first term in equation 2) are shown in Fig. 3. The straight lines in this figure
represent the calculated energies for the largest supercell sizes. The addition of first order terms
has led to a better convergence of the formation energies of the Gagc'f1 defect than the Vg,
defect. Analysis of the results reveals that the convergence of the V. defect energy can be
improved by multiplying the pre-factor of the 1/ V1/3 correction term by 1.8. Tt is likely that
this is because additional factors, such as elastic effects, that also affect the convergence of the
formation energy [10, 11]. Geometry relaxation of the defects may also lead to changes in the
convergence of the defect energies with respect to supercell size. The convergence of the Ga%f1
and Vg, defect formation energies can not be significantly improved through the addition of a
1/V correction term. It is notable that the formation energies calculated for the 8 atom supercell
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are very poorly estimated, even after first order corrections. It is likely that this is because the
defect charge is not fully localised within the supercell.

Ideally, the rate of convergence of a defect formation energy in a fully relaxed system should
be analysed for increasing supercell sizes. In most cases, however, it will be computationally
expensive to perform such tests. Analysis of our results suggests that the formation energy
of a Vi, defect in CuGaSs can be calculated to within an accuracy of 0.2 eV for a 64 atom
supercell after including an energy offset correction (section 4) and first order corrections given
by equation 2. The formation energy of a Gaé‘fl defect is calculated to an accuracy of around
0.05 eV. Previous studies that have considered a wide range of charged defects show that, after
applying first order corrections, a 64 atoms supercell is usually sufficient to obtain charged defect
formation energies to within 0.2 to 0.3 eV, and in many cases to within less than 0.1 eV [10].

6. Conclusion

The methodology for the calculation of charged defects has been discussed and illustrated
through the use of two example calculations. It is shown that an energy offset correction must be
applied to allow a comparison between the energies of charged and uncharged systems. Ideally
the convergence of the formation energy of a charged defect should be analysed for increasing
system size. It is, however, usually sufficient to perform a single energy calculation on a cell
of approximate size 10x10x10 A3 and estimate the energy term due to Coulomb interactions
between periodically repeating charged defects to obtain a formation energy of an isolated defect
to within about 0.1 eV.
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